Overview of the protocol

PCR Barcoding Expansion Pack 1-96 features

This kit is recommended for users who:

- want to optimise their sequencing experiment for throughput
- require control over read length
- would like to utilise upstream processes such as size selection or whole genome amplification
- want to multiplex up to 96 different samples

Introduction to the PCR Barcoding Expansion Pack 1-96

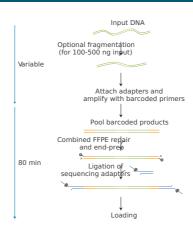
This protocol describes how to carry out PCR barcoding using the Ligation Sequencing Kit 1D (SQK-LSK110) and the PCR Barcoding Expansion Pack 1-96 (EXP-PBC096). It is highly recommended that a Lambda control experiment is completed first to become familiar with the technology.

Steps in the sequencing workflow:

Prepare for your experiment

You will need to:

- Extract your DNA, and check its length, quantity and purity


The quality checks performed during the protocol are essential in ensuring experimental success

- Ensure you have your sequencing kit, the correct equipment and third-party reagents
- Download the software for acquiring and analysing your data
- Check your flow cell to ensure it has enough pores for a good sequencing run

Library preparation

You will need to:

- Prepare the DNA ends for adapter attachment
- Attach barcoding adapters supplied in the kit to the DNA ends
- Amplify each barcoded sample by PCR, then pool the samples together
- Repair the DNA, and prepare the DNA ends for adapter attachment $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right)$
- Attach sequencing adapters supplied in the kit to the DNA ends
- Prime the flow cell, and load your DNA library into the flow cell

Sequencing and analysis

You will need to:

- Start a sequencing run using the MinKNOW software, which will collect raw data from the device and convert it into basecalled reads
- Start the EPI2ME software and select the barcoding workflow

96 barcode sequences

Component	Sequence
BC01 / RB01	AAGAAAGTTGTCGGTGTCTTTGTG
BC02 / RB02	TCGATTCCGTTTGTAGTCGTCTGT
BC03 / RB03	GAGTCTTGTGTCCCAGTTACCAGG
BC04 / RB04	TTCGGATTCTATCGTGTTTCCCTA
BC05 / RB05	CTTGTCCAGGGTTTGTGTAACCTT
BC06 / RB06	TTCTCGCAAAGGCAGAAAGTAGTC
BC07 / RB07	GTGTTACCGTGGGAATGAATCCTT
BC08 / RB08	TTCAGGGAACAAACCAAGTTACGT
BC09 / RB09	AACTAGGCACAGCGAGTCTTGGTT
BC10 / RB10	AAGCGTTGAAACCTTTGTCCTCTC
BC11 / RB11	GTTTCATCTATCGGAGGGAATGGA
BC12 / RB12	CAGGTAGAAAGAAGCAGAATCGGA
BC13 / 16S13 / RB13	AGAACGACTTCCATACTCGTGTGA
BC14 / 16S14 / RB14	AACGAGTCTCTTGGGACCCATAGA
BC15 / 16S15 / RB15	AGGTCTACCTCGCTAACACCACTG
BC16 / 16S16 / RB16	CGTCAACTGACAGTGGTTCGTACT

Component	Sequence
BC17 / 16S17 / RB17	ACCCTCCAGGAAAGTACCTCTGAT
BC18 / 16S18 / RB18	CCAAACCCAACAACCTAGATAGGC
BC19 / 16S19 / RB19	GTTCCTCGTGCAGTGTCAAGAGAT
BC20 / 16S20 / RB20	TTGCGTCCTGTTACGAGAACTCAT
BC21 / 16S21 / RB21	GAGCCTCTCATTGTCCGTTCTCTA
BC22 / 16S22 / RB22	ACCACTGCCATGTATCAAAGTACG
BC23 / 16S23 / RB23	CTTACTACCCAGTGAACCTCCTCG
BC24 / 16S24 / RB24	GCATAGTTCTGCATGATGGGTTAG
BC25 / RB25	GTAAGTTGGGTATGCAACGCAATG
BC26 / RB26	CATACAGCGACTACGCATTCTCAT
BC27 / RB27	CGACGGTTAGATTCACCTCTTACA
BC28 / RB28	TGAAACCTAAGAAGGCACCGTATC
BC29 / RB29	CTAGACACCTTGGGTTGACAGACC
BC30 / RB30	TCAGTGAGGATCTACTTCGACCCA
BC31 / RB31	TGCGTACAGCAATCAGTTACATTG
BC32 / RB32	CCAGTAGAAGTCCGACAACGTCAT
BC33 / RB33	CAGACTTGGTACGGTTGGGTAACT
BC34 / RB34	GGACGAAGAACTCAAGTCAAAGGC
BC35 / RB35	CTACTTACGAAGCTGAGGGACTGC
BC36 / RB36	ATGTCCCAGTTAGAGGAGGAAACA
BC37 / RB37	GCTTGCGATTGATGCTTAGTATCA
BC38 / RB38	ACCACAGGAGGACGATACAGAGAA
BC39 / RB39	CCACAGTGTCAACTAGAGCCTCTC
BC40 / RB40	TAGTTTGGATGACCAAGGATAGCC
BC41 / RB41	GGAGTTCGTCCAGAGAAGTACACG
BC42 / RB42	CTACGTGTAAGGCATACCTGCCAG
BC43 / RB43	CTTTCGTTGTTGACTCGACGGTAG
BC44 / RB44	AGTAGAAAGGGTTCCTTCCCACTC

Component	Sequence
BC45 / RB45	GATCCAACAGAGATGCCTTCAGTG
BC46 / RB46	GCTGTGTTCCACTTCATTCTCCTG
BC47 / RB47	GTGCAACTTTCCCACAGGTAGTTC
BC48 / RB48	CATCTGGAACGTGGTACACCTGTA
BC49 / RB49	ACTGGTGCAGCTTTGAACATCTAG
BC50 / RB50	ATGGACTTTGGTAACTTCCTGCGT
BC51 / RB51	GTTGAATGAGCCTACTGGGTCCTC
BC52 / RB52	TGAGAGACAAGATTGTTCGTGGAC
BC53 / RB53	AGATTCAGACCGTCTCATGCAAAG
BC54 / RB54	CAAGAGCTTTGACTAAGGAGCATG
BC55 / RB55	TGGAAGATGAGACCCTGATCTACG
BC56 / RB56	TCACTACTCAACAGGTGGCATGAA
BC57 / RB57	GCTAGGTCAATCTCCTTCGGAAGT
BC58 / RB58	CAGGTTACTCCTCCGTGAGTCTGA
BC59 / RB59	TCAATCAAGAAGGGAAAGCAAGGT
BC60 / RB60	CATGTTCAACCAAGGCTTCTATGG
BC61 / RB61	AGAGGGTACTATGTGCCTCAGCAC
BC62 / RB62	CACCCACACTTACTTCAGGACGTA
BC63 / RB63	TTCTGAAGTTCCTGGGTCTTGAAC
BC64 / RB64	GACAGACACCGTTCATCGACTTTC
BC65 / RB65	TTCTCAGTCTTCCTCCAGACAAGG
BC66 / RB66	CCGATCCTTGTGGCTTCTAACTTC
BC67 / RB67	GTTTGTCATACTCGTGTGCTCACC
BC68 / RB68	GAATCTAAGCAAACACGAAGGTGG
BC69 / RB69	TACAGTCCGAGCCTCATGTGATCT
BC70 / RB70	ACCGAGATCCTACGAATGGAGTGT
BC71 / RB71	CCTGGGAGCATCAGGTAGTAACAG
BC72 / RB72	TAGCTGACTGTCTTCCATACCGAC
BC73 / RB73	AAGAAACAGGATGACAGAACCCTC
BC74 / RB74	TACAAGCATCCCAACACTTCCACT
BC75 / RB75	GACCATTGTGATGAACCCTGTTGT
BC76 / RB76	ATGCTTGTTACATCAACCCTGGAC

Component	Sequence
BC77 / RB77	CGACCTGTTTCTCAGGGATACAAC
BC78 / RB78	AACAACCGAACCTTTGAATCAGAA
BC79 / RB79	TCTCGGAGATAGTTCTCACTGCTG
BC80 / RB80	CGGATGAACATAGGATAGCGATTC
BC81 / RB81	CCTCATCTTGTGAAGTTGTTTCGG
BC82 / RB82	ACGGTATGTCGAGTTCCAGGACTA
BC83 / RB83	TGGCTTGATCTAGGTAAGGTCGAA
BC84 / RB84	GTAGTGGACCTAGAACCTGTGCCA
BC85 / RB85	AACGGAGGAGTTAGTTGGATGATC
BC86 / RB86	AGGTGATCCCAACAAGCGTAAGTA
BC87 / RB87	TACATGCTCCTGTTGTTAGGGAGG
BC88 / RB88	TCTTCTACTACCGATCCGAAGCAG
BC89 / RB89	ACAGCATCAATGTTTGGCTAGTTG
BC90 / RB90	GATGTAGAGGGTACGGTTTGAGGC
BC91 / RB91	GGCTCCATAGGAACTCACGCTACT
BC92 / RB92	TTGTGAGTGGAAAGATACAGGACC
BC93 / RB93	AGTTTCCATCACTTCAGACTTGGG
BC94 / RB94	GATTGTCCTCAAACTGCCACCTAC
BC95 / RB95	CCTGTCTGGAAGAAGAATGGACTT
BC96 / RB96	CTGAACGGTCATAGAGTCCACCAT

IMPORTANT

We do not recommend mixing barcoded libraries with non-barcoded libraries prior to sequencing.

IMPORTANT

Compatibility of this protocol

This protocol should only be used in combination with:

- PCR Barcoding Expansion Pack 1-96 (EXP-PBC096)
- Ligation Sequencing Kit (SQK-LSK110)
- FLO-MIN106 (R9.4.1) flow cells
- Flow Cell Wash Kit (EXP-WSH004)

Equipment and consumables

Materials

- 100-200 fmol first-round PCR product in 24 μ l (with tailed primers, see full protocol for further details)
- PCR Barcoding Expansion 1-96 (EXP-PBC096)
- Ligation Sequencing Kit (SQK-LSK110)

Consumables

- Agencourt AMPure XP beads (Beckman Coulter[™], A63881)
- NEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing (cat # E7180S or E7180L). Alternatively, you can use the NEBNext® products below:
- NEBNext Ultra II End repair/dA-tailing Module (E7546)
- NEBNext Quick Ligation Module (E6056)
- 1.5 ml Eppendorf DNA LoBind tubes
- 0.2 ml thin-walled PCR tubes
- Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
- Freshly prepared 70% ethanol in nuclease-free water
- LongAmp Taq 2X Master Mix (e.g. NEB M0287)
- 0.2 ml 96-well PCR plate

Equipment

- Hula mixer (gentle rotator mixer)
- Magnetic separator, suitable for 1.5 ml Eppendorf tubes
- Microfuge
- Vortex mixer
- Thermal cycler
- P1000 pipette and tips
- P200 pipette and tips
- P100 pipette and tips
- P20 pipette and tips
- P10 pipette and tips
- P2 pipette and tips
- Ice bucket with ice
- Timer
- Multichannel pipette

Optional Equipment

- Agilent Bioanalyzer (or equivalent)
- Qubit fluorometer (or equivalent for QC check)
- Eppendorf 5424 centrifuge (or equivalent)

For this protocol, you will need 100-200 fmol first-round PCR product with tailed primers in 24 μ l per sample.

Input DNA

How to QC your input DNA

It is important that the input DNA meets the quantity and quality requirements. Using too little or too much DNA, or DNA of poor quality (e.g. highly fragmented or containing RNA or chemical contaminants) can affect your library preparation.

For instructions on how to perform quality control of your DNA sample, please read thenput DNA/RNA QC protocol.

Chemical contaminants

Depending on how the DNA is extracted from the raw sample, certain chemical contaminants may remain in the purified DNA, which can affect library preparation efficiency and sequencing quality. Read more about contaminants on the <u>Contaminants page</u> of the Community.

NEBNext® Companion Module for Oxford Nanopore Technologies® Ligation Sequencing

For customers new to nanopore sequencing, we recommend buying the <u>NEBNext® Companion Module</u> for Oxford Nanopore Technologies® Ligation Sequencing (catalogue number E7180S or E7180L), which contains all the NEB reagents needed for use with the Ligation Sequencing Kit.

Please note, for our amplicon protocols, NEBNext FFPE DNA Repair Mix and NEBNext FFPE DNA Repair Buffer are not required.

Ligation Sequencing Kit (SQK-LSK110) contents

DCS: DNA control strand
AMX-F: Adapter mix F
LNB: Ligation bffer
LFB: L fragment bffer
SFB: S fragment bffer
SBII: Sequencing bffer II

EB : Elution buffer LBII : Loading beads II LS : Loading solution FB : Flush buffer FLT : Flush tether

Name	Acronym	Cap colour	No. of vials	Fill volume per vial (μl)
DNA CS	DCS	Yellow	1	35
Adapter Mix F	AMX-F	Green	1	40
Ligation Buffer	LNB	Clear	1	200
L Fragment Buffer	LFB	White cap, orange stripe on label	2	1,800
S Fragment Buffer	SFB	Grey	2	1,800
Sequencing Buffer	SBII	Red	1	500
Elution Buffer	EB	Black	1	200

Name	Acronym	Cap colour	No. of vials	Fill volume per vial (μl)
Loading Beads II	LBII	Pink	1	360
Loading Solution	LS	White cap, pink sticker on label	1	360
Flush Buffer	FB	Blue	6	1,170
Flush Tether	FLT	Purple	1	200

PCR Barcoding Expansion Pack 1-96 (EXP-PBC096)

Name	Acronym	Cap colour	No. of vials/plates	Fill volume per well (μl)
PCR Barcode Primer Mix plate	BC01-96	White	1 plate	24
Barcode Adapter plate	BCA	Blue	1 plate	240

Please note: The Barcode Adapter (BCA) is only required for library preparation if the first-round of PCR with tailed primers is not carried out.

IMPORTANT

The blue-capped Barcode adapter tubes are used in the PCR 96 Barcoding genomic DNA protocol only. They are not required for preparing amplicons or cDNA.

Layout of barcodes in the 96 tube plate

The wells of the 96 tube plate correspond to the barcodes in the following way. All barcodes are supplied at 10 μ M concentration and to be used at a final concentration of 0.2 μ M.

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12
BC01	BC02	BC03	BC04	BC05	BC06	BC07	BC08	BC09	BC10	BC11	BC12
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
BC13	BC14	BC15	BC16	BC17	BC18	BC19	BC20	BC21	BC22	BC23	BC24
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12
BC25	BC26	BC27	BC28	BC29	BC30	BC31	BC32	BC33	BC34	BC35	BC36
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12
BC37	BC38	BC39	BC40	BC41	BC42	BC43	BC44	BC45	BC46	BC47	BC48
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
BC49	BC50	BC51	BC52	BC53	BC54	BC55	BC56	BC57	BC58	BC59	BC60
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12
BC61	BC62	BC63	BC64	BC65	BC66	BC67	BC68	BC69	BC70	BC71	BC72
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12
BC73	BC74	BC75	BC76	BC77	BC78	BC79	BC80	BC81	BC82	BC83	BC84
H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
BC85	BC86	BC87	BC88	BC89	BC90	BC91	BC92	BC93	BC94	BC95	BC96

Computer requirements and software

MinION Mk1B IT requirements

Sequencing on a MinION Mk1B requires a high-spec computer or laptop to keep up with the rate of data acquisition. Read more in the MinION IT Requirements document.

MinION Mk1C IT requirements

The MinION Mk1C contains fully-integrated compute and screen, removing the need for any accessories to generate and analyse nanopore data. Read more in the MinION Mk1C IT requirements document.

Software for nanopore sequencing

MinKNOW

The MinKNOW software controls the nanopore sequencing device, collects sequencing data in real time and processes it into basecalls. You will be using MinKNOW for every sequencing experiment. MinKNOW can also demultiplex reads by barcode, and basecall/demultiplex data after a sequencing run has completed.

MinKNOW use

For instructions on how to run the MinKNOW software, please refer to the relevant section in the MinKNOW protocol.

EPI2ME (optional)

The EPI2ME cloud-based platform performs further analysis of basecalled data, for example alignment to the Lambda genome,

barcoding, or taxonomic classification. You will use the EPI2ME platform *only* if you would like further analysis of your data post-basecalling.

EPI2ME installation and use

For instructions on how to create an EPI2ME account and install the EPI2ME Desktop Agent, please refer to the EPI2ME Platform protocol.

Guppy (optional)

The Guppy command-line software can be used for basecalling and demultiplexing reads by barcode instead of MinKNOW. You can use it if you would like to re-analyse old data, or integrate basecalling into your analysis pipeline.

Guppy installation and use

If you would like to use the Guppy software, please refer to the Guppy protocol.

Check your flow cell

We highly recommend that you check the number of pores in your flow cell prior to starting a sequencing experiment. This should be done within three months of purchasing for MinION/GridION/PromethION flow cells, or within four weeks of purchasing for Flongle flow cells. Oxford Nanopore Technologies will replace any flow cell with fewer than the number of pores in the table below, when the result is reported within two days of performing the flow cell check, and when the storage recommendations have been followed. To do the flow cell check, please follow the instructions in the Flow Cell Check document.

Flow cell	Minimum number of active pores covered by warranty
Flongle Flow Cell	50
MinION/GridION Flow Cell	800
PromethION Flow Cell	5000

PCR barcoding amplicons

Introduction to barcoding amplicons

You will need to perform a first PCR using your specific primers which are tailed with the universal sequences given below, and then a second PCR to incorporate the Oxford Nanopore barcode sequences into your amplicans. Multiple first-round PCR products can be pooled together so that each amplican sample in the pool receives the same barcode in the second PCR.

Universal sequences for tailing PCR primers

The first PCR amplification requires tailed primers to be used which carry these sequences:

5' TTTCTGTTGGTGCTGATATTGC-[project-specific forward primer sequence] 3'

5' ACTTGCCTGTCGCTCTATCTTC-[project-specific reverse primer sequence] 3'

We recommend a purification step at the end of this PCR reaction using standard methods which are suitable for the amplicon size, for example AMPure XP beads, to remove proteins, salts, dNTPs and primers.

All amplicon samples which are to receive the same barcode should be quantified and pooled in the desired ratios before the barcoding PCR is performed.

In the second PCR, a typical template concentration is 0.5 nM, but the input mass and the number of PCR cycles can be adjusted as appropriate, depending upon the requirements of the experiment.

The Barcoding kit contains Oxford Nanopore primers with barcode sequences. These primers are added in a second amplification reaction.

The Oxford Nanopore Barcoding primers are supplied at 10 μM and should be used at a final concentration of 0.2 μM.

Barcoding PCR

~15 minutes

Materials	• <100-200 fmol of each DNA sample to be barcoded in 24 μl • PCR Barcodes (BC01-96, at 10 $\mu M)$
Consumables	 LongAmp Taq 2X Master Mix (e.g. NEB M0287) Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
Equipment	Centrifuge capable of taking 96-well plates Thermal cycler

1 Prepare the DNA in nuclease-free water.

- Transfer <100-200 fmol of each DNA sample to be barcoded into a 1.5 ml Eppendorf DNA LoBind tube
- Adjust the volume to 24 μl with nuclease-free water
- $\circ~\mbox{Mix}$ thoroughly by flicking the tube to avoid unwanted shearing
- Spin down briefly in a microfuge

Capping and decapping the 96 well format

Layout of barcodes in the 96 tube plate

The wells of the 96 tube plate correspond to the barcodes in the following way. All barcodes are supplied at 10 μ M concentration and to be used at a final concentration of 0.2 μ M.

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	A11	A12
BC01	BC02	BC03	BC04	BC05	BC06	BC07	BC08	BC09	BC10	BC11	BC12
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12
BC13	BC14	BC15	BC16	BC17	BC18	BC19	BC20	BC21	BC22	BC23	BC24
C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12
BC25	BC26	BC27	BC28	BC29	BC30	BC31	BC32	BC33	BC34	BC35	BC36
D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11	D12
BC37	BC38	BC39	BC40	BC41	BC42	BC43	BC44	BC45	BC46	BC47	BC48
E1	E2	E3	E4	E5	E6	E7	E8	E9	E10	E11	E12
BC49	BC50	BC51	BC52	BC53	BC54	BC55	BC56	BC57	BC58	BC59	BC60
F1	F2	F3	F4	F5	F6	F7	F8	F9	F10	F11	F12
BC61	BC62	BC63	BC64	BC65	BC66	BC67	BC68	BC69	BC70	BC71	BC72
G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12
BC73	BC74	BC75	BC76	BC77	BC78	BC79	BC80	BC81	BC82	BC83	BC84
H1	H2	H3	H4	H5	H6	H7	H8	H9	H10	H11	H12
BC85	BC86	BC87	BC88	BC89	BC90	BC91	BC92	BC93	BC94	BC95	BC96

2 In a 0.2 ml 96 well plate, set up a barcoding PCR reaction as follows for each library:

The following is written for LongAmp Taq, but can be adapted for use with other polymerases.

Between each addition, pipette mix 10-20 times.

Reagent	Volume
PCR Barcode (one of BC1-BC96, at 10 μ M)	1 μΙ
<100-200 fmol first-round PCR product	24 μΙ
LongAmp Taq 2x master mix	25 μΙ
Total volume	50 μΙ

If the amount of input material is altered, the number of PCR cycles may need to be adjusted to produce the same yield.

- 3 Mix by pipetting.
- 4 Seal the plate with adhesive film or PCR strip caps and briefly spin down in a plate spinner.
- 5 Amplify using the following cycling conditions:

Cycle step	Temperature	Time	No. of cycles
Initial denaturation	95 °C	3 mins	1
Denaturation	95 °C	15 secs	12-15 (b)
Annealing	62 °C (a)	15 secs (a)	12-15 (b)
Extension	65 °C (c)	dependent on length of target fragment (d)	12-15 (b)
Final extension	65 °C	dependent on length of target fragment (d)	1
Hold	4 °C	00	

- a. This is specific to the Oxford Nanopore primer and should be maintained
- b. Adjust accordingly if input quantities are altered
- c. This temperature is determined by the type of polymerase that is being used (given here for LongAmp Taq polymerase)
- d. Adjust accordingly for different lengths of amplicons and the type of polymerase that is being used. Oxford Nanopore R&D teams standardly use 8 min for DNA fragmented to 8 kb.

- 6 Purify the barcoded DNA using standard methods which are suitable for the fragment size.
- 7 Quantify the barcoded library using standard techniques, and pool all barcoded libraries in the desired ratios in a 1.5 ml DNA LoBind Eppendorf tube.
- 8 Prepare 1 μg of pooled barcoded libraries in 47 μl nuclease-free water.

Optional Action

If the volume of your pool exceeds the 47 μ l required for the end-prep reaction, consider a 2.5x AMPure XP bead purification of the pool to concentrate your sample.

END OF STEP

This pooled library is now ready to be end-repaired and adapted for nanopore sequencing. However, at this point it is also possible to store the sample at 4°C overnight.

End-prep

~35 minutes

М	at	-Δ	ri	al	_
ITI	aι	.eı		aı	3

- Pooled barcoded DNA
- DNA Control Sample (DCS)

Consumables

- 0.2 ml thin-walled PCR tubes
- 1.5 ml Eppendorf DNA LoBind tubes
- Nuclease-free water (e.g. ThermoFisher, cat # AM9937)
- NEBNext Ultra II End Repair / dA-tailing Module (E7546)
- Agencourt AMPure XP beads
- Freshly prepared 70% ethanol in nuclease-free water

Equipment

- P1000 pipette and tips
- P100 pipette and tips
- P10 pipette and tips
- Thermal cycler at 20°C and 65°C
- Microfuge
- Hula mixer (gentle rotator mixer)
- Magnetic rack
- Ice bucket with ice
- 1 Thaw DNA Control Sample (DCS) at room temperature, spin down, mix by pipetting, and place on ice.

2 Prepare the NEBNext Ultra II End Repair / dA-tailing Module reagents in accordance with manufacturer's instructions, and place on ice:

For optimal perfomance, NEB recommend the following:

- 1. Thaw all reagents on ice.
- 2. Flick and/or invert the reagent tubes to ensure they are well mixed.
- 3. Always spin down tubes before opening for the first time each day.
- 4. The Ultra II End Prep Buffer may have a little precipitate. Allow the mixture to come to room temperature and pipette the buffer up and down several times to break up the precipitate, followed by vortexing the tube for several seconds to ensure the reagent is thoroughly mixed.

IMPORTANT

Do not vortex the NEBNext Ultra II End Prep Enzyme Mix.

IMPORTANT

It is important that the NEBNext Ultra II End Prep Reaction Buffer is mixed well by vortexing.

Check for any visible precipitate; vortexing for at least 30 seconds may be required to solubilise all precipitate.

3 In a 0.2 ml thin-walled PCR tube, mix the following:

Reagent	Volume
DCS	1 μΙ
DNA	49 μΙ
Ultra II End-prep Reaction Buffer	7 μΙ
Ultra II End-prep Enzyme Mix	3 μΙ
Total	60 μΙ

- 4 Ensure the components are thoroughly mixed by pipetting.
- 5 Using a thermal cycler, incubate at 20°C for 5 minutes and 65°C for 5 minutes.

IMPORTANT

AMPure XP bead clean-up

It is recommended that the repaired/end-prepped DNA sample is subjected to the following clean-up with AMPure XP beads. This clean-up can be omitted for simplicity and to reduce library preparation time. However, it has been observed that omission of this clean-up can: reduce subsequent adapter ligation efficiency, increase the prevalence of chimeric reads, and lead to an increase in pores being unavailable for sequencing. If omitting the clean-up step, proceed to the next section.

- 6 Resuspend the AMPure XP beads by vortexing.
- 7 Transfer the DNA sample to a clean 1.5 ml Eppendorf DNA LoBind tube.
- 8 Add 60 μl of resuspended AMPure XP beads to the end-prep reaction and mix by flicking the tube.
- 9 Incubate on a Hula mixer (rotator mixer) for 5 minutes at room temperature.
- 10 Prepare 500 µl of fresh 70% ethanol in nuclease-free water.
- 11 Spin down the sample and pellet on a magnet until supernatant is clear and colourless. Keep the tube on the magnet, and pipette off the supernatant.
- 12 Keep the tube on the magnet and wash the beads with 200 μ l of freshly prepared 70% ethanol without disturbing the pellet. Remove the ethanol using a pipette and discard.
- 13 Repeat the previous step.
- 14 Spin down and place the tube back on the magnet. Pipette off any residual ethanol. Allow to dry for ~30 seconds, but do not dry the pellet to the point of cracking.
- 15 Remove the tube from the magnetic rack and resuspend the pellet in 61 μ l nuclease-free water. Incubate for 2 minutes at room temperature.
- 16 Pellet the beads on a magnet until the eluate is clear and colourless, for at least 1 minute.
- 17 Remove and retain 61 µl of eluate into a clean 1.5 ml Eppendorf DNA LoBind tube.

Optional Action

Quantify 1 µl of eluted sample using a Qubit fluorometer.

END OF STEP

Take forward the repaired and end-prepped DNA into the adapter ligation step. However, at this point it is also possible to store the sample at 4°C overnight.

Adapter ligation and clean-up

~30 minutes

Materials

- Adapter Mix F (AMX F)
- Ligation Buffer (LNB) from the Oxford Nanopore kit
- Long Fragment Buffer (LFB)
- Short Fragment Buffer (SFB)
- Elution Buffer (EB) from the Oxford Nanopore kit

Consumables

- NEBNext Quick Ligation Module (E6056)
- 1.5 ml Eppendorf DNA LoBind tubes
- Agencourt AMPure XP beads

Equipment

- Magnetic rack
- Microfuge
- Vortex mixer
- P1000 pipette and tips
- P100 pipette and tips
- P20 pipette and tips
- P10 pipette and tips

IMPORTANT

Although the recommended 3rd party ligase is supplied with its own buffer, the ligation efficiency of Adapter Mix F (AMX-F) is higher when using Ligation Buffer supplied within the Ligation Sequencing Kit.

- 1 Spin down the Adapter Mix F (AMX-F) and Quick T4 Ligase, and place on ice.
- 2 Thaw Ligation Buffer (LNB) at room temperature, spin down and mix by pipetting. Due to viscosity, vortexing this buffer is ineffective. Place on ice immediately after thawing and mixing.
- 3 Thaw the Elution Buffer (EB) at room temperature, mix by vortexing, spin down and place on ice.

IMPORTANT

Depending on the wash buffer (LFB or SFB) used, the clean-up step after adapter ligation is designed to either enrich for DNA fragments of >3 kb, or purify all fragments equally.

- To enrich for DNA fragments of 3 kb or longer, use Long Fragment Buffer (LFB)
- To retain DNA fragments of all sizes, use Short Fragment Buffer (SFB)
- 4 To enrich for DNA fragments of 3 kb or longer, thaw one tube of Long Fragment Buffer (LFB) at room temperature, mix by vortexing, spin down and place on ice.
- 5 To retain DNA fragments of all sizes, thaw one tube of Short Fragment Buffer (SFB) at room temperature, mix by vortexing, spin down and place on ice.
- 6 In a 1.5 ml Eppendorf DNA LoBind tube, mix in the following order:

Between each addition, pipette mix 10-20 times.

Reagent	Volume
DNA sample from the previous step	60 μΙ
Ligation Buffer (LNB)	25 μΙ
NEBNext Quick T4 DNA Ligase	10 μΙ
Adapter Mix F (AMX-F)	5 μΙ
Total	100 μΙ

- 7 Ensure the components are thoroughly mixed by pipetting, and spin down.
- 8 Incubate the reaction for 10 minutes at room temperature.

IMPORTANT

If you have omitted the AMPure purification step after DNA repair and end-prep, do not incubate the reaction for longer than 10 minutes.

- 9 Resuspend the AMPure XP beads by vortexing.
- 10 Add 40 µl of resuspended AMPure XP beads to the reaction and mix by flicking the tube.
- 11 Incubate on a Hula mixer (rotator mixer) for 5 minutes at room temperature.

- 12 Spin down the sample and pellet on a magnet. Keep the tube on the magnet, and pipette off the supernatant.
- 13 Wash the beads by adding either 250 μ l Long Fragment Buffer (LFB) or 250 μ l Short Fragment Buffer (SFB). Flick the beads to resuspend, spin down, then return the tube to the magnetic rack and allow the beads to pellet. Remove the supernatant using a pipette and discard.
- 14 Repeat the previous step.
- 15 Spin down and place the tube back on the magnet. Pipette off any residual supernatant. Allow to dry for \sim 30 seconds, but do not dry the pellet to the point of cracking.
- 16 Remove the tube from the magnetic rack and resuspend the pellet in 15 μl Elution Buffer (EB). Spin down and incubate for 10 minutes at room temperature. For high molecular weight DNA, incubating at 37°C can improve the recovery of long fragments.
- 17 Pellet the beads on a magnet until the eluate is clear and colourless, for at least 1 minute.
- 18 Remove and retain 15 µl of eluate containing the DNA library into a clean 1.5 ml Eppendorf DNA LoBind tube.

Dispose of the pelleted beads

Quantify 1 µl of eluted sample using a Qubit fluorometer.

IMPORTANT

We recommend loading 5-50 fmol of the final prepared library onto a flow cell.

Loading more than the maximal recommended amount of DNA can have a detrimental effect on output as higher quantities of DNA results in a larger number of ligated DNA ends with loaded motor protein. This depletes fuel in the Sequencing Buffer, regardless of whether or not the DNA fragments are being sequenced. This leads to fuel depletion and speed drop-off early in the sequencing run. Dilute the libraries in Elution Buffer if required.

If you are using the Flongle for sample prep development, we recommend loading 3-20 fmol instead.

END OF STEP

The prepared library is used for loading into the flow cell. Store the library on ice until ready to load.

Optional Action

If quantities allow, the library may be diluted in Elution Buffer (EB) for splitting across multiple flow cells.

Additional buffer for doing this can be found in the Sequencing Auxiliary Vials expansion (EXP-AUX002), available to purchase separately. This expansion also contains additional vials of Sequencing Buffer II (SQII) and Loading Beads II (LBII), required for loading the libraries onto flow cells.

TIP

Library storage recommendations

We recommend storing libraries in Eppendorf DNA LoBind tubes at 4°C for short term storage or repeated use, for example, reloading flow cells between washes.

For single use and **long term storage** of more than 3 months, we recommend storing libraries at-80°C in Eppendorf DNA LoBind tubes.

Priming and loading the SpotON flow cell

~10 minutes

Materials

- Loading Solution (LS)
- Sequencing Buffer II (SBII)
- Loading Beads II (LBII)
- Flush Buffer (FB)
- Flush Tether (FLT)

Consumables

- 1.5 ml Eppendorf DNA LoBind tubes
- Nuclease-free water (e.g. ThermoFisher, cat # AM9937)

Equipment

- MinION Mk1B
- SpotON Flow Cell
- P1000 pipette and tips
- P100 pipette and tips
- P20 pipette and tips
- P10 pipette and tips

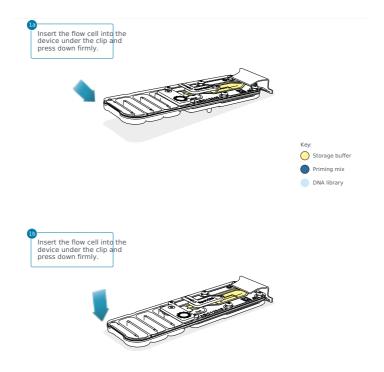
TIP

Priming and loading a flow cell

We recommend all new users watch the Priming and loading your flow cell video before your first run.

Using the Loading Solution

We recommend using the Loading Beads II (LBII) for loading your library onto the flow cell for most sequencing experiments. However, if you have previously used water to load your library, you must use Loading Solution (LS) instead of water.


Note: some customers have noticed that viscous libraries can be loaded more easily when not using Loading Beads.

IMPORTANT

Please note that the Sequencing Tether (SQT) tube will NOT be used in this protocol.

- 1 Thaw the Sequencing Buffer II (SBII), Loading Beads II (LBII) or Loading Solution (LS, if using), Flush Tether (FLT) and one tube of Flush Buffer (FB) at room temperature before mixing the reagents by vortexing and spin down at room temperature.
- ² To prepare the flow cell priming mix, add 30 μ l of thawed and mixed Flush Tether (FLT) directly to the tube of thawed and mixed Flush Buffer (FB), and mix by vortexing at room temperature.
- 3 Open the MinION device lid and slide the flow cell under the clip.

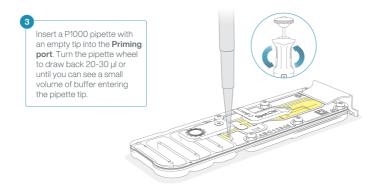
Press down firmly on the flow cell to ensure correct thermal and electrical contact.

Optional Action

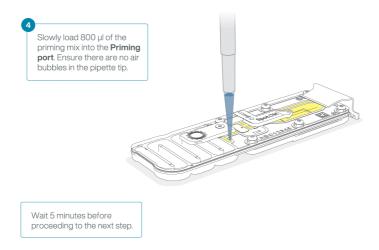
Complete a flow cell check to assess the number of pores available before loading the library.

This step can be omitted if the flow cell has been checked previously.

Please see the MinKNOW Flow cell check protocol for more information


4 Slide the priming port cover clockwise to open the priming port.

IMPORTANT


Take care when drawing back buffer from the flow cell. Do not remove more than 20-30 µl, and make sure that the array of pores are covered by buffer at all times. Introducing air bubbles into the array can irreversibly damage pores.

- 5 After opening the priming port, check for a small air bubble under the cover. Draw back a small volume to remove any bubbles (a few μ I):
 - 1. Set a P1000 pipette to 200 μl
 - 2. Insert the tip into the priming port
 - 3. Turn the wheel until the dial shows 220-230 ul, to draw back 20-30 ul, or until you can see a small volume of buffer entering the pipette tip

Note: Visually check that there is continuous buffer from the priming port across the sensor array.

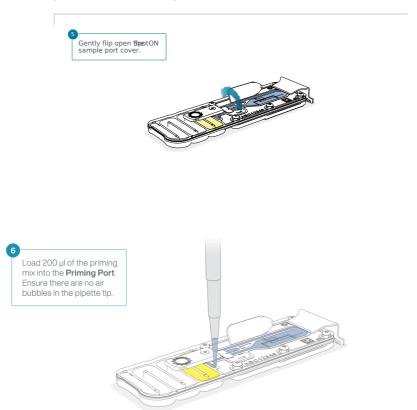
6 Load 800 μ l of the priming mix into the flow cell via the priming port, avoiding the introduction of air bubbles. Wait for 5 minutes. During this time, prepare the library for loading by following the steps below.

7 Thoroughly mix the contents of the Loading Beads II (LBII) by pipetting.

IMPORTANT

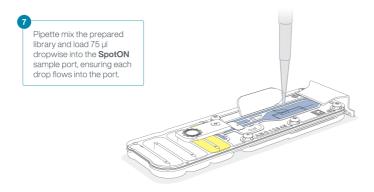
The Loading Beads II (LBII) tube contains a suspension of beads. These beads settle very quickly. It is vital that they are mixed immediately before use.

8 In a new tube, prepare the library for loading as follows:

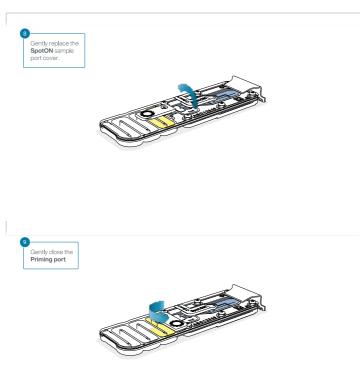

Reagent	Volume per flow cell
Sequencing Buffer II (SBII)	37.5 μΙ
Loading Beads II (LBII), mixed immediately before use, or Loading Solution (LS), if using	25.5 μΙ
DNA library	12 μΙ
Total	75 μΙ

Note: Load the library onto the flow cell immediately after adding the Sequencing Buffer II (SBII) and Loading Beads II (LBII) because the fuel in the buffer will start to be consumed by the adapter.

9 Complete the flow cell priming:


- 1. Gently lift the SpotON sample port cover to make the SpotON sample port accessible.
- 2. Load **200 μl** of the priming mix into the flow cell via the priming port **not** the SpotON sample port), avoiding the introduction of air bubbles.

Note: Load the library as soon as possible after this step.



10 Mix the prepared library gently by pipetting up and down just prior to loading.

11 Add 75 μ l of sample to the flow cell via the SpotON sample port in a dropwise fashion. Ensure each drop flows into the port before adding the next.

12 Gently replace the SpotON sample port cover, making sure the bung enters the SpotON port, close the priming port and replace the MinION device lid.

Priming and loading the SpotON flow cell for GridION

~10 minutes

Materials

- Loading Solution (LS)
- Sequencing Buffer II (SBII)
- Loading Beads II (LBII)
- Flush Buffer (FB)
- Flush Tether (FLT)

Consumables

- 1.5 ml Eppendorf DNA LoBind tubes
- Nuclease-free water (e.g. ThermoFisher, cat # AM9937)

Equipment

- GridION device
- P1000 pipette and tips
- P100 pipette and tips
- P20 pipette and tips
- P10 pipette and tips

TIP

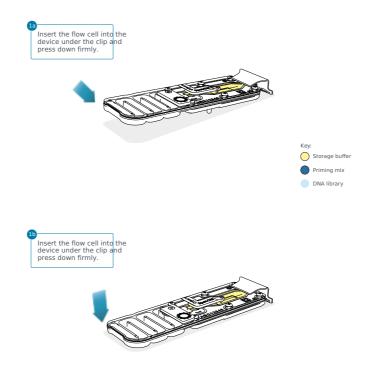
Priming and loading a flow cell

We recommend all new users watch the Priming and loading your flow cell video before your first run.

Using the Loading Solution

We recommend using the Loading Beads II (LBII) for loading your library onto the flow cell for most sequencing experiments. However, if you have previously used water to load your library, you must use Loading Solution (LS) instead of water.

Note: some customers have noticed that viscous libraries can be loaded more easily when not using Loading Beads.


IMPORTANT

Please note that the Sequencing Tether (SQT) tube will NOT be used in this protocol.

- 1 Thaw the Sequencing Buffer II (SBII), Loading Beads II (LBII) or Loading Solution (LS, if using), Flush Tether (FLT) and one tube of Flush Buffer (FB) at room temperature before mixing the reagents by vortexing and spin down at room temperature.
- 2 To prepare the flow cell priming mix, add 30 μ l of thawed and mixed Flush Tether (FLT) directly to the tube of thawed and mixed Flush Buffer (FB), and mix by vortexing at room temperature.

3 Slide open the GridION lid and insert the flow cell.

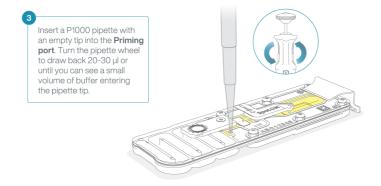
Press down firmly on the flow cell to ensure correct thermal and electrical contact.

Optional Action

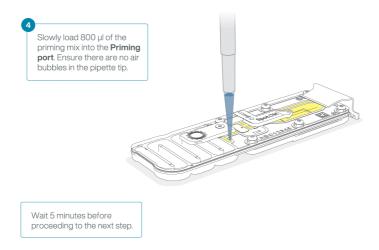
Complete a flow cell check to assess the number of pores available before loading the library.

This step can be omitted if the flow cell has been checked previously.

Please see the MinKNOW Flow cell check protocol for more information


4 Slide the priming port cover clockwise to open the priming port.

IMPORTANT


Take care when drawing back buffer from the flow cell. Do not remove more than 20-30 μ l, and make sure that the array of pores are covered by buffer at all times. Introducing air bubbles into the array can irreversibly damage pores.

- 5 After opening the priming port, check for a small air bubble under the cover. Draw back a small volume to remove any bubbles (a few μ I):
 - 1. Set a P1000 pipette to 200 μl
 - 2. Insert the tip into the priming port
 - 3. Turn the wheel until the dial shows 220-230 ul, to draw back 20-30 ul, or until you can see a small volume of buffer entering the pipette tip

Note: Visually check that there is continuous buffer from the priming port across the sensor array.

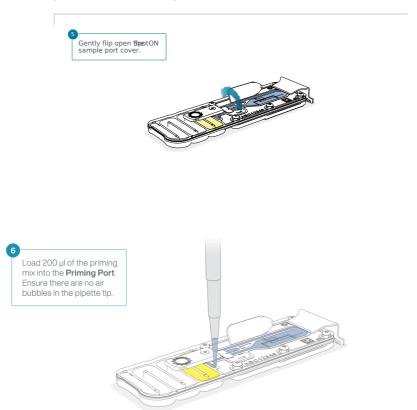
6 Load 800 μ l of the priming mix into the flow cell via the priming port, avoiding the introduction of air bubbles. Wait for 5 minutes. During this time, prepare the library for loading by following the steps below.

7 Thoroughly mix the contents of the Loading Beads II (LBII) by pipetting.

IMPORTANT

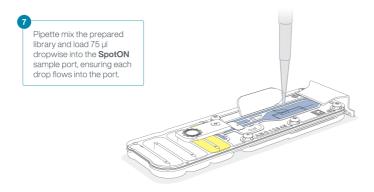
The Loading Beads II (LBII) tube contains a suspension of beads. These beads settle very quickly. It is vital that they are mixed immediately before use.

8 In a new tube, prepare the library for loading as follows:

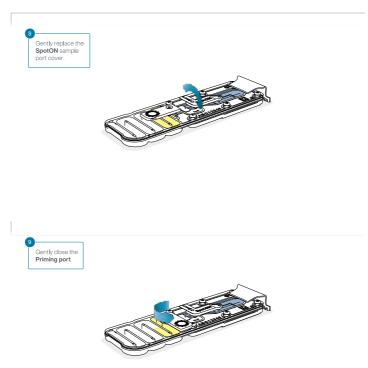

Reagent	Volume per flow cell
Sequencing Buffer II (SBII)	37.5 μΙ
Loading Beads II (LBII), mixed immediately before use, or Loading Solution (LS), if using	25.5 μΙ
DNA library	12 μΙ
Total	75 μΙ

Note: Load the library onto the flow cell immediately after adding the Sequencing Buffer II (SBII) and Loading Beads II (LBII) because the fuel in the buffer will start to be consumed by the adapter.

9 Complete the flow cell priming:


- 1. Gently lift the SpotON sample port cover to make the SpotON sample port accessible.
- 2. Load **200 μl** of the priming mix into the flow cell via the priming port **not** the SpotON sample port), avoiding the introduction of air bubbles.

Note: Load the library as soon as possible after this step.



10 Mix the prepared library gently by pipetting up and down just prior to loading.

11 Add 75 μ l of sample to the flow cell via the SpotON sample port in a dropwise fashion. Ensure each drop flows into the port before adding the next.

12 Gently replace the SpotON sample port cover, making sure the bung enters the SpotON port, close the priming port and replace the GridION lid.

Data acquisition and basecalling

Overview of nanopore data analysis

For a full overview of nanopore data analysis, which includes options for basecalling and post-basecalling analysis, please refer to the Data Analysis document.

How to start sequencing

The sequencing device control, data acquisition and real-time basecalling are carried out by the MinKNOW software. It is assumed you have already installed MinKNOW on your computer.. There are three options for how to carry out sequencing:

1. Data acquisition and basecalling in real-time using MinKNOW on a computer

Follow the instructions in the <u>MinKNOW protocol</u> beginning from the "Starting a sequencing run" section until the end of the "Completing a MinKNOW run" section.

2. Data acquisition and basecalling in real-time using the GridION device

Follow the instructions in the GridION user manual.

3. Data acquisition and basecalling in real-time using the MinION Mk1C device

Follow the instructions in the MinION Mk1C user manual.

5. Data acquisition using MinKNOW on a computer and basecalling at a later time using MinKNOW or Guppy

Follow the instructions in the MinKNOW protocol beginning from the "Starting a sequencing run" section until the end of the "Completing a MinKNOW run" section. When setting your experiment parameters, set the Basecalling tab to OFF. After the sequencing experiment has completed, follow the instructions in the Post-run analysis section of the MinKNOW protocol or the Guppy protocol starting from the "Quick Start Guide for Guppy" section.

Downstream analysis

Post-basecalling analysis

There are several options for further analysing your basecalled data:

1. EPI2ME platform

The EPI2ME platform is a cloud-based data analysis service developed by Metrichor Ltd., a subsidiary of Oxford Nanopore Technologies. The EPI2ME platform offers a range of analysis workflows, e.g. for metagenomic identification, barcoding, alignment,

and structural variant calling. The analysis requires no additional equipment or compute power, and provides an easy-to-interpret report with the results. For instructions on how to run an analysis workflow in EPI2ME, please follow the instructions in the EPI2ME protocol, beginning at the "Starting data analysis" step.

2. EPI2ME Labs tutorials and workflows

For more in-depth data analysis, Oxford Nanopore Technologies offers a range of bioinformatics tutorials and workflows available in EPI2ME Labs, which are available in the EPI2ME Labs section of the Community. The platform provides a vehicle where workflows deposited in GitHub by our Research and Applications teams can be showcased with descriptive texts, functional bioinformatics code and example data.

3. Research analysis tools

Oxford Nanopore Technologies' Research division has created a number of analysis tools, which are available in the Oxford Nanopore <u>GitHub repository</u>. The tools are aimed at advanced users, and contain instructions for how to install and run the software. They are provided as-is, with minimal support.

4. Community-developed analysis tools

If a data analysis method for your research question is not provided in any of the resources above, please refer to the Bioinformatics section of the Resource centre. Numerous members of the Nanopore Community have developed their own tools and pipelines for analysing nanopore sequencing data, most of which are available on GitHub. Please be aware that these tools are not supported by Oxford Nanopore Technologies, and are not guaranteed to be compatible with the latest chemistry/software configuration.

Ending the experiment

Materials

- Flow Cell Wash Kit (EXP-WSH004)
- 1 After your sequencing experiment is complete, if you would like to reuse the flow cell, please follow the Wash Kit instructions and store the washed flow cell at 2-8°C, OR

The Flow Cell Wash Kit protocol is available on the Nanopore Community.

TIP

We recommend you to wash the flow cell as soon as possible after you stop the run. However, if this is not possible, leave the flow cell on the device and wash it the next day.

2 Follow the returns procedure by washing out the flow cell ready to send back to Oxford Nanopore.

Instructions for returning flow cells can be foundhere.

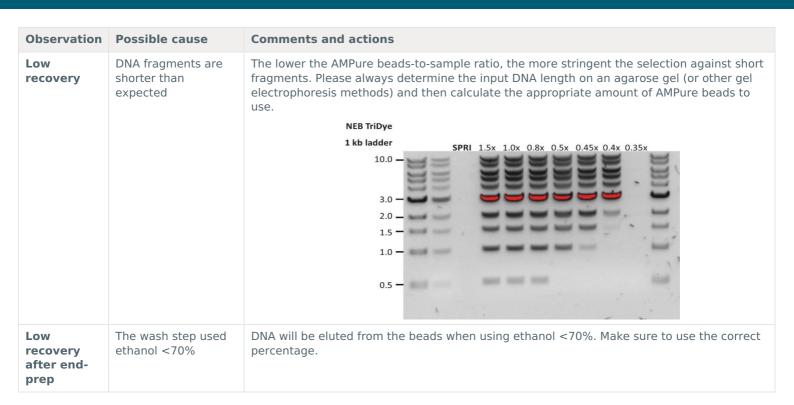
IMPORTANT

If you encounter issues or have questions about your sequencing experiment, please refer to the Troubleshooting Guide that can be found in the online version of this protocol.

Issues during DNA/RNA extraction and library preparation

Below is a list of the most commonly encountered issues, with some suggested causes and solutions.

We also have an FAQ section available on the Nanopore Community Support section.


If you have tried our suggested solutions and the issue still persists, please contact Technical Support via email (support@nanoporetech.com) or via LiveChat in the Nanopore Community.

Low sample quality

Observation	Possible cause	Comments and actions
Low DNA purity (Nanodrop reading for DNA OD 260/280 is <1.8 and OD 260/230 is <2.0-2.2)	The DNA extraction method does not provide the required purity	The effects of contaminants are shown in the Contaminants Know-how piece. Please try an alternative extraction method that does not result in contaminant carryover. Consider performing an additional SPRI clean-up step.
Low RNA integrity (RNA integrity number <9.5 RIN, or the rRNA band is shown as a smear on the gel)	The RNA degraded during extraction	Try a different RNA extraction method. For more info on RIN, please see the RNA Integrity Number Know-how piece.
RNA has a shorter than expected fragment length	The RNA degraded during extraction	Try a different RNA extraction method). For more info on RIN, please see the RNA Integrity Number Know-how piece. We recommend working in an RNase-free environment, and to keep your lab equipment RNase-free when working with RNA.

Low DNA recovery after AMPure bead clean-up

Observation	Possible cause	Comments and actions
Low recovery	DNA loss due to a lower than intended AMPure beads-to-	1. AMPure beads settle quickly, so ensure they are well resuspended before adding them to the sample.
	sample ratio	2. When the AMPure beads-to-sample ratio is lower than 0.4:1, DNA fragments of any size will be lost during the clean-up.

The VolTRAX run terminated in the middle of the library prep

Observation	Possible cause	Comments and actions
The green light was switched off or	Insufficient power supply to the VolTRAX	The green LED signals that 3 A are being supplied to the device. This is the requirement for the full capabilities of the VolTRAX V2 device. Please use computers that meet the requirements listed on the VolTRAX V2 protocol.
An adapter was used to connect the VolTRAX USB-C cable to the computer		

The VolTRAX software shows an inaccurate amount of reagents loaded

Observation	Possible cause	Comments and actions
The VolTRAX software shows an inaccurate amount of reagents loaded	Pipette tips do not fit the VolTRAX cartridge ports	Rainin 20 μ l or 30 μ l and Gilson 10 μ l, 20 μ l or 30 μ l pipette tips are compatible with loading reagents into the VolTRAX cartridge. Rainin 20 μ l is the most suitable.
The VolTRAX software shows an inaccurate amount of reagents loaded	The angle at which reagents are pipetted into the cartridge is incorrect	The pipetting angle should be slightly greater than the cartridge inlet angle. Please watch the demo video included in the VolTRAX software before loading.

Issues during the sequencing run

Below is a list of the most commonly encountered issues, with some suggested causes and solutions.

We also have an FAQ section available on the Nanopore Community Support section.

If you have tried our suggested solutions and the issue still persists, please contact Technical Support via email (support@nanoporetech.com) or via LiveChat in the Nanopore Community.

Fewer pores at the start of sequencing than after Flow Cell Check

Observation	Possible cause	Comments and actions
MinKNOW reported a lower number of pores at the start of sequencing than the number reported by the Flow Cell Check	An air bubble was introduced into the nanopore array	After the Flow Cell Check it is essential to remove any air bubbles near the priming port before priming the flow cell. If not removed, the air bubble can travel to the nanopore array and irreversibly damage the nanopores that have been exposed to air. The best practice to prevent this from happening is demonstrated in this video.
MinKNOW reported a lower number of pores at the start of sequencing than the number reported by the Flow Cell Check	The flow cell is not correctly inserted into the device	Stop the sequencing run, remove the flow cell from the sequencing device and insert it again, checking that the flow cell is firmly seated in the device and that it has reached the target temperature. If applicable, try a different position on the device (GridION/PromethION).
MinKNOW reported a lower number of pores at the start of sequencing than the number reported by the Flow Cell Check	Contaminations in the library damaged or blocked the pores	The pore count during the Flow Cell Check is performed using the QC DNA molecules present in the flow cell storage buffer. At the start of sequencing, the library itself is used to estimate the number of active pores. Because of this, variability of about 10% in the number of pores is expected. A significantly lower pore count reported at the start of sequencing can be due to contaminants in the library that have damaged the membranes or blocked the pores. Alternative DNA/RNA extraction or purification methods may be needed to improve the purity of the input material. The effects of contaminants are shown in the Contaminants Know-how piece. Please try an alternative extraction method that does not result in contaminant carryover.

Observation	Possible cause	Comments and actions
MinKNOW shows "Script failed"		Restart the computer and then restart MinKNOW. If the issue persists, please collect the MinKNOW log files and contact Technical Support.

Pore occupancy below 40%

Observation	Possible cause	Comments and actions
Pore occupancy <40%	Not enough library was loaded on the flow cell	5–50 fmol of good quality library can be loaded on to a MinION Mk1B/GridION flow cell. Please quantify the library before loading and calculate mols using tools like the Promega Biomath Calculator, choosing "dsDNA: μ g to pmol"
Pore occupancy close to 0	The Ligation Sequencing Kit was used, and sequencing adapters did not ligate to the DNA	Make sure to use the NEBNext Quick Ligation Module (E6056) and Oxford Nanopore Technologies Ligation Buffer (LNB, provided in the SQK-LSK110 kit) at the sequencing adapter ligation step, and use the correct amount of each reagent. A Lambda control library can be prepared to test the integrity of the third-party reagents.
Pore occupancy close to 0	The Ligation Sequencing Kit was used, and ethanol was used instead of LFB or SFB at the wash step after sequencing adapter ligation	Ethanol can denature the motor protein on the sequencing adapters. Make sure the LFB or SFB buffer was used after ligation of sequencing adapters.
Pore occupancy close to 0	No tether on the flow cell	Tethers are adding during flow cell priming (FLT tube). Make sure FLT was added to FB before priming.

Shorter than expected read length

Observation Possible cause	Comments and actions
----------------------------	----------------------

Observation	Possible cause	Comments and actions
Shorter than expected read length	Unwanted fragmentation of DNA sample	Read length reflects input DNA fragment length. Input DNA can be fragmented during extraction and library prep. 1. Please review the Extraction Methods in the Nanopore Community for best practice for extraction. 2. Visualise the input DNA fragment length distribution on an agarose gel before proceeding to the library prep.
		In the image above, Sample 1 is of high molecular weight, whereas Sample 2 has been fragmented. 3. During library prep, avoid pipetting and vortexing when mixing reagents. Flicking or inverting the tube is sufficient.

Large proportion of recovering pores

Observation	Possible cause	Comments and actions	
Large proportion of recovering pores (shown as dark blue in the channels panel and duty time plot)	Contaminants are present in the sample	Some contaminants can be cleared from the pores by the unblocking function built into MinKNOW. If this is successful, the pore status will change to "single pores". If the portion of recovering pores (unavailable pores in the extended view) stays large or increases:	
		 A nuclease flush can be performed, or Run several cycles of PCR to try and dilute any contaminants that may be causing problems. 	
		Duty Time Summary of channel states over time	
		Ducket tale finance) S Acts true finance) The GD H-H MM Time (D H-H MM)	
		The duty time plot above shows an increasing proportion of "recovering" pores over the course of a sequencing experiment	

Large proportion of inactive pores

Observation	Possible cause	Comments and actions
Large proportion of inactive pores (shown as light blue in the channels panel and duty time plot. Pores or membranes are irreversibly damaged)	Air bubbles have been introduced into the flow cell	Air bubbles introduced through flow cell priming and library loading can irreversibly damage the pores. Watch the Priming and loading your flow cell video for best practice
Large proportion of inactive pores	Certain compounds co- purified with DNA	Known compounds, include polysaccharides, typically associate with plant genomic DNA. 1. Please refer to the Plant leaf DNA extraction method. 2. Clean-up using the QIAGEN PowerClean Pro kit. 3. Perform a whole genome amplification with the original gDNA sample using the QIAGEN REPLI-g kit.
Large proportion of inactive pores	Contaminants are present in the sample	The effects of contaminants are shown in the Contaminants Know-how piece. Please try an alternative extraction method that does not result in contaminant carryover.

Reduction in sequencing speed and q-score later into the run

Observation	Possible cause	Comments and actions
. 3 .	Fast fuel consumption is typically seen when the flow cell is overloaded with library (\sim 5-10 fmol of library is recommended).	Add more fuel to the flow cell by following the instructions in the MinKNOW protocol. In future experiments, load lower amounts of library to the flow cell.

Temperature fluctuation

Observation	Possible cause	Comments and actions
Temperature fluctuation	has lost contact	Check that there is a heat pad covering the metal plate on the back of the flow cell. Re-insert the flow cell and press it down to make sure the connector pins are firmly in contact with the device. If the problem persists, please contact Technical Services.

Failed to reach target temperature

Observation	Possible cause	Comments and actions
MinKNOW shows "Failed to reach target temperature"	The instrument was placed in a location that is colder than normal room temperature, or a location with poor ventilation (which leads to the flow cells overheating)	MinKNOW has a default timeframe for the flow cell to reach the target temperature. Once the timeframe is exceeded, an error message will appear and the sequencing experiment will continue. However, sequencing at an incorrect temperature may lead to a decrease in throughput and lower q-scores. Please adjust the location of the sequencing device to ensure that it is placed at room temperature with good ventilation, then re-start the process in MinKNOW. Please refer to this FAQ for more information on MinION Mk 1B temperature control.

Guppy - no input .fast5 was found or basecalled

Observation Possible cause		Comments and actions	
No input .fast5 was found or basecalled	<pre>input_path did not point to the .fast5 file location</pre>	Theinput_path has to be followed by the full file path to the .fast5 files to be basecalled, and the location has to be accessible either locally or remotely through SSH.	
No input .fast5 was found or basecalled	The .fast5 files were in a subfolder at the <i>input_path</i> location	To allow Guppy to look into subfolders, add therecursive flag to the command	

Guppy - no Pass or Fail folders were generated after basecalling

Observation	Possible cause	Comments and actions
No Pass or Fail folders were generated after basecalling	The qscore_filtering flag was not included in the command	Theqscore_filtering flag enables filtering of reads into Pass and Fail folders inside the output folder, based on their strand q-score. When performing live basecalling in MinKNOW, a q-score of 7 (corresponding to a basecall accuracy of ~80%) is used to separate reads into Pass and Fail folders.

Guppy - unusually slow processing on a GPU computer

Observation	Possible cause	Comments and actions
processing on a	wasn't included	Thedevice flag specifies a GPU device to use for accelerate basecalling. If not included in the command, GPU will not be used. GPUs are counted from zero. An example isdevice cuda:0 cuda:1, when 2 GPUs are specified to use by the Guppy command.

MinIT - the MinKNOW interface is not shown in the web browser

Observation	Possible cause	Comments and actions
The MinKNOW interface is not shown in the web browser	Browser compatibility issue	Always use Google Chrome as the browser to view MinKNOW. Alternatively, instead of typing //mt-xxxxxx (x is a number) in the address bar, type in in the generic IP address, 10.42.0.1, which identifies the MinIT Wi-Fi router.
The MinKNOW interface is not shown in the web browser	The MinIT Wi-Fi was not used for connecting to the computer or mobile device	Make sure the computer or mobile device is using the MinIT Wi-Fi. It should be shown as MT-xxxxxx (x is a number) on the underside label on the MinIT: Disable the Ethernet connection from the computer or mobile device as needed. If necessary, contact your IT department to determine if the MinIT Wi-Fi is blocked (MinIT generic IP: 10.42.0.1). Please white-list MinIT as needed.
The MinKNOW interface is not shown in the web browser	The MinIT was not on the same network that the computer was connected to.	Make sure that the wall sockets used by the Ethernet cables from the MinIT and computer belong to the same local network.

MinIT - the MinIT software cannot be updated

Observation	Possible cause	Comments and actions
The MinIT software cannot be updated	The firewall is blocking IPs for update	Please consult your IT department, as the MinIT software requires access to thefollowing AWS IP ranges. Access to the following IP addresses is also needed: 178.79.175.200 96.126.99.215
The MinIT software cannot be updated	The device already has the latest version of the software	Occassionaly, the MinIT software admin page displays "updates available" even when the software is already up-to-date. Please compare the version listed on the admin page with the one on the Software Downloads page. Alternatively, SSH into the MinIT through a SSH Client (e.g. Bitvise or Putty, as described in the MinIT protocol) on a Windows computer or the terminal window on a Mac, run the command, dpkg -l grep minit, to find out the version of the MinIT software and sudo apt update if an update is needed. If the issue still persists, please contact Technical Services with details of the error.